Deconfinement: Renormalized Polyakov Loops
to Matrix Models
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|. Review: Phase Transitions at T # 0, Lattice Results for N=3,nf =0 — 3
(N = # colors, nf = # flavors)

2. Bare Polyakov Loops, V representations R: factorization for N—co

3. Renormalized Polyakov Loops
4. Numerical results from the lattice:
N=3,nf=0: R = 3,6,8 (10?)

5. Effective (matrix!) model for renormalized loops



Review of Lattice Results: N=3,nf =0, 2, 2+1, 3

nf=0: T deconf= 270 MeV
pressure small for T <T_d
like N—oo: p~ 1for T<T_d, p~NA2forT>T _d (Thorn,8l)
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BIG change: between nf = 0 and nf = 3,
p_ideal: 6 to 48.5 x ideal m=0 boson  Tc: 270 to 175 MeV!
Even the order changes: first for nf=0 to “crossover” for nf = 2+|
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Perhaps: even for nf # 0,“transition” dominated by gluons

AtT # 0: thermodynamics dominated by Polyakov loops
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Three colors, pure gauge: weakly first order?
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Deconfining Transition vs N: First order V N = 4
Lucini, Teper, Wenger ‘03: latent heat ~ N*2 for N= 3,4, 6, 8
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Wilson Lines at T # 0
Always: “pure” SU(N) gauge, no dynamical quarks (nf = 0)

Imaginary time formalism: 7:0 — 1/T
Wilson line in fundamental representation:

Ly (Z,7) =Pexp (zg/ A2 (Z, T’)tff\de’>
0
= propagator for “test quark’at x, moving up in (imaginary) time

DGy = 5(7’) => Gy = LNQ(T)

Ly = L}LV = propagator “test anti-quark’ at x, moving back in time

Ly e SU(N) : L}LVLN =1y, det(Ly) =1 (Mandelstam’s constraint)



Polyakov Loops
Wrap all the way around in T: Ly (7, 1/T) — Ly

Polyakov loop = normalized loop = gauge invariant

1
éN:NtI'LN

Confinement: test quarks don’t propagate

<€N> =0 y 1 < Tdeconf
Deconfinement: test quarks propagate
<€N> — €i9’<€N>’ 7& 0 , 1T'>1y

tNO __ 1 -
€ _ Spontaneous breaking of global Z(N) = center SU(N)

‘t Hooft ‘79, Svetitsky and Yaffe, ‘82



Adjoint Representation

Adjoint rep. = “test meson”
tr Logi = [tr Ly|? —

Note: both coefficients ~ |
Check: Ly =1y —trLy = N? —1 = dimension of the rep.

Adjoint loop: divide by dim. of rep.

1
gadj — N2 1 tr Ladj
At large N,
1
a,dj MNP + O <N2> — fGCtOI‘iZGtiOﬂ



Two-index representations
2-index rep.s = “di-test quarks” = symmetric or anti-sym.
1

trL(NQ:I:N)/Q — 5 ((tI‘LN)2 I tl“L?V)

Di-quarks: two gks wrap once in time, or one gk wraps twice
Again: both coeff’s ~ |. Subscript = dimension of rep/s = (N2 + N)/2

For arbitrary rep. R, if d_R = dimension of R,

1
/p=—tr L
R dRTR

For 2-index rep.s £,as N —,

1
gi ~ 5?\[ + O (N) corr’s I/N, not [/NA2: ~ —trL



Representations, N=3

Label rep.s by their dimension:
fundamental = 3
adjoint = 8
symmetric 2-index = 6

special to N=3:anti-symmetric 2-index = 3

“test baryon” = 10: 1
610 — 1—0 (tI‘ L3 tr Lg -+ 1)

Measured 3, 6, 8, & 10 on lattice



Loops at Infinite N
“Conjugate” rep’s of Gross & Taylor ‘93: Ly and L = L}r\,
If all test gks and test anti-qks wrap once and only once in time,
tr Lr = #(tr Ly)P+ (tr LL)P- + ...
Many other termes:

#' tr L (tr Ly)P+~2(tr L,)P- + ...

dimension R = dp ~ NP+1P-

As N — o jf# #...are all of order |, first term dominates, and:

lr~ (En)P (E)P~ + 0 <%>

Normalization:if £ = ﬁﬁ =1, lg=1V R



Factorization at Infinite N

In the deconfined phase, the fundamental loop condenses:

Un)=eP1Un)#0 , T>T; , eNl=1
Makeenko & Migdal ‘80: at N=<, expectation values factorize:
(Cr) = (In)P ()P~ + O (N7)
= r (L) PP+ O(N )

Phase trivial: er = py —p— = Z(N) charge of R, defined modulo N
Magnitude not trivial: highest powers of |({x)| win.

At infinite N, any loop order parameter for deconfinement, for all ep

For adjoint loop: Damgaard ‘87 + ...

N.B.: <£test bary0n> — <€N>N_1 <tI’ L?V/N>



“Mass” renormalization for loops

Loop = propagator for infinitely massive test quark.
Still has mass renormalization, proportional to length of loop:

(br) =exp(—mpgr/T) mREfj‘-?”/a

a = lattice spacing. m_R = 0 with dimensional regularization, but so what!?

To |-loop order in 3+1 dimensions:
1 Vel Crg?
1 () cagt [ a0

Divergences order by order in gh2. Only power law divergence for
straight loops in 3+ dim’s.; corrections ~aT.

In 3+1 dim’s, loops with cusps do have logarithmic divergence.

In 2+1 dim’s, straight loops also have log. div.s. (cusps do not)



Renormalization of Wilson Lines
Gervais and Neveu ‘80; Polyakov ‘80; Dotsenko & Vergeles ‘80 ....

For irreducible representations R, renormalized Wilson line:
Lr =Lgr/Zr , Zgr=exp(—mg/T)
ZRr = renormalization constant for Wilson line

As R’s irreducible, different rep’s don’t mix under renormalization

No anomalous dim. for Wilson line: no condition to fix Zr at some scale

For all local, composite operators, Z's independent of T
Wilson line = non-local composite operator:

Z r temperature dependent: from |/T,and mpg

(numerically, from simulations)



Renormalization of Polyakov Loops

Renormalized loop: zR — KR/ZR
Constraint for bare loop: WR‘ <1

For renormalized loop: |ZR’ < Zf_il

If mrp>0VT, Zr — 0 asa— 0, no constraint on ren’d loop

E.g.:as T =0, ren’d loops approach | from above: (Gava & Jengo ‘81)

) =1~ = (1) ens? [ G ~ ()CRG )by )

2 2
k= + mDebye

CR (g2N)3/2>
N 873

((R) ~ exp (+

N
Smooth large N limit: Ci ~ E(er +p_) + O(1)



Why all representations!?
Previously: concentrated on loops in fund. and adj. rep’s, esp. with cusps.

AtT # 0, natural for loops, at a given point in space, to wrap around in

T many times. Most general gauge-invariant term:

N ’I’L+ ;_ n+ n
G = (tr LI, )™ (tr L) .. (tr (LT )% )™ .

1 2 1

By group theory (the character expansion):

G =XRrCr IR
It is only consistent to renormalize this expression, linear in the loops.
Ifalm R>0,ata=0: ¢ =

Discovered numerically. Irrelevant: physics is in the ren/d loops.



Lattice Regularization of Polyakov Loops

Basic idea: compare two lattices. Same temperature, different lattice spacing

If a << |/T, ren’d quantities the same.

N_t = # time steps = |/(aT) changes between the two lattices:get Z R

N_s = # spatial steps; keep N_t/N_s fixed to minimize finite volume effects

lOg (‘ <€R> D dth + fcont flat

t
fav s Zn cont <ZR> Numerically, f&* =0
Each f R is computed at fixed T. As such, there is nothing to adjust.

N.B.: also finite volume corrections from zero modes; to be computed.

Explicit exponentiation of divergences to ~g"4 at a70:
Curci, Menotti, & Paffuti, ‘85



Lattice Results

Standard Wilson action, three colors, quenched.

N, = 4,6,8,&10. N, = 3N,
Lattice coupling constant 8 = 6/g°

Ba = coupling for deconfining transition: = (/N7 )!

Non-perturbative renormalization:

log(T/Ty) = 1.7139(8 — B4) + . ..

To get the same T/T_d @ different N_t, must compute at different (!

Calculate grid in B, interpolate to get the same T/T_d at different N_t

N.B.: Method same with dynamical quarks

Measured (3, (g, {3, & £10 (No signal for 10 for N_t > 4)
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Renormalized Polyakov Loops
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No signal of decuplet loop at N_t > 4; C |0 big, so bare loop small



Results for Ren’d Polyakov Loops
T < Ty : Z(3) symmetry = (f3) = ({g) = 0
But Z(3) charge es = 0 = (f3) # 0 for T < T}.
Numerically : (fg) = small #% ~0, T <Ty
Like large N: Greensite & Halpern ‘81, Damgaard ‘87...
(Similar to measuring adjoint string tension in confined phase)

Transition first order —ren.d loops jump atT_d:

(03)| ~ 4+ .05, T =T

T >T_d: Find ordering: 3 > 8 > 6. But compute difference loops:
5ls = (lg) — (€3)? ~ O(1/N)
505 = (fs) — | (G5 ~ O(1/N?)



Bielefeld’s Renormalized Polyakov Loop

Kaczmarek,
Karsch,
Petreczky, &
Zantow ‘02
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Bielefeld’s Ren'd Polyakov Loop, N=2
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Difference Loops: Test of Factorization at N=3
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| Sharp octet spike
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505 ~ O(1/N?) < .12; |64g| ~ O(1/N) < .25



Bare Loops don’t exhibit Factorization
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Mean Field Theory for Fundamental Loop
At large N, if fundamental loop condenses, factorization = all other loops
This is a mean field type relation; implies mean field for <ZN>?

General effective lagrangian for renormalized loops:

Choose basic variables as Wilson lines, not Polykov loops: (i = lattice sites)
z= / [ Ly (i) exp (~S(Ca(i))) Ly (i) ¢ SU(N)

Loops automatically have correct Z(N) charge, and satisfy factorization.

Effective action Z(N) symmetric. Potential terms (starts with adjoint loop):
W = 525" rUR(i)
and next to nearest neighbor couplings:

Sp = —(NZ/?))Z,,;,,,@Z%IZ;QR/:O 5373/ Re KR(Z')KR/ (’L + ﬁ) :

In mean field approximation, that’s it. (By using character exp.)



Matrix Model (=Mean Field) for N=3
Simplest possible model:only 333« = (33 # 0 (Damgaard,‘87)

<€3> = /dL 63 eXp (1853<€3>R6€3) // dL eXPp (18ﬁ3<€3>Re€3)
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Now compute loops in other representations using this 33(1')



Matrix Model: N=3
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Approximate agreement for 6 & 8. Predicts 10 should be there.

Solid lines = matrix model. Points = lattice data for renormalized loops.



Difference Loops for Matrix Model, N=3
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Sextet diff. loop > octet, in agreement with |/N exp.

But much broader, and much smaller, than the lattice data!



Matrix Model, N=<«_ and Gross-Witten

Consider mean field, where the only couplingis Oy n- = 3
Gross & Witten ‘80, Kogut, Snow, & Stone ‘82, Green & Karsch ‘84

At N=<, mean field potential is nhon-analytic, given by two different potentials:
P yuc, g Y P

V. =B1=p)07 . £<1/(25)
3

Vi =—280+ B0 + %log(Zﬂﬁ) +7 . (2 1/(25)

For fixed B, the potential is everywhere continuous, but its third
derivative is not, at the point ¢ = 1/(2[3)

B <1:(f) =0 = confined phase

B >1:() #0 = deconfined phase <€> B 1

_75:1+
2
31

1
“M(“ 6>: 0 1. 8- o0



Gross-Witten Transition: “Critical”’ First Order

Transition first order. Order parameter jumps: 0 to 1/2. Also, latent heat # 0:

Vo =0,8<1 , Vi ~—(8-1)/4,5—1%

m

But masses vanish, asymmetrically, at the transition!
m? ~2(1-08) , B—1". mi~4yB3-1 , B—1T7.

If B~T, and the deconfining transition is Gross-Witten at N=«, then
the string tension and the Debye mass vanish at T_d as:

o(T) ~ (Ty=T)"?, T — Ty
Mpepye(T) ~ (T —Ty)"*, T — T

Other terms? Adjoint loop in potential just shifts B.

Higher terms in potential do seem to give ordinary |st order transitions.

Lattice: N=3 close to Gross-Witten. N>3?



To do

Two colors: matching critical region near T_d to mean field region about T_d?

Higher rep.s, factorization at N=2?

Three colors: better measurements, esp.near T_d: (¢3)(T) ...

“Spikes” in sextet and octet loops? Fit to matrix model?

For decuplet loop, use “improved” Wilson line? /dQﬁ ~ HTLs

Limp = /dQﬁ exp( ig/(Ao + kaE - 7)dr)

Four colors:is transition Gross-Witten? Or is N=3 an accident!?

With dynamical quarks: method to determine ren.d loop(s) identical

~ 1 ~ 1
s @) (7. ) ~ @ (7. ) :
€/ with quarks pure gauge



